Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(11): 1613-1622, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983521

RESUMO

Effective Ab-mediated responses depend on a highly diverse Ab repertoire with the ability to bind a wide range of epitopes in disease-causing agents. The generation of this repertoire depends on the somatic recombination of the variable (V), diversity (D), and joining (J) genes in the Ig loci of developing B cells. It has been known for some time that individual V, D, and J gene segments rearrange at different frequencies, but the mechanisms behind this unequal V gene usage have not been well understood. However, recent work has revealed that newly described enhancers scattered throughout the V gene-containing portion of the Ig loci regulate the V gene recombination frequency in a regional manner. Deletion of three of these enhancers revealed that these elements exert many layers of control during V(D)J recombination, including long-range chromatin interactions, epigenetic milieu, chromatin accessibility, and compartmentalization.


Assuntos
Cromatina , Região Variável de Imunoglobulina , Cromatina/genética , Região Variável de Imunoglobulina/genética , Rearranjo Gênico/genética , Genes de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos B/genética
2.
Nat Immunol ; 24(2): 320-336, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36717722

RESUMO

Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.


Assuntos
Cromatina , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Cromatina/genética , Região Variável de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Linfócitos B , Epigênese Genética
3.
Transcription ; 11(1): 37-51, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829768

RESUMO

Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.


Assuntos
Cromatina/química , Receptores de Antígenos/química , Animais , Cromatina/genética , Cromatina/metabolismo , Humanos , Conformação Proteica , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo
4.
Mol Cell ; 73(1): 48-60.e5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449725

RESUMO

The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.


Assuntos
Diversidade de Anticorpos , Núcleo Celular/imunologia , Elementos Facilitadores Genéticos , Rearranjo Gênico do Linfócito B , Cadeias kappa de Imunoglobulina/imunologia , Células Precursoras de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Montagem e Desmontagem da Cromatina , Genótipo , Células HEK293 , Humanos , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Células Precursoras de Linfócitos B/metabolismo , Conformação Proteica , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Relação Estrutura-Atividade
5.
Front Immunol ; 9: 425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593713

RESUMO

CCCTC-binding factor (CTCF) is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR) loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells) and developmental stage-specificity (pre-B vs. pro-B) in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRß loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for creating CTCF-mediated convergent loops throughout the loci. CTCF/cohesin loops, along with transcription factors, drives contraction of AgR loci to facilitate the creation of a diverse repertoire of antibodies and T cell receptors.


Assuntos
Linfócitos B/fisiologia , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes RAG-1 , Loci Gênicos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...